پياده سازي VLSI يك شبكه عصبي آنالوگ مناسب براي الگوريتم هاي ژنتيك

4,000 تومان می‌توانید توسط تمام کارت‌های بانکی عضو شتاب خرید خود را انجام داده و بلافاصله بعد از خرید فایل را دریافت نمایید. خرید و دانلود فایل سوال از فروشنده راهنمای دریافت
  • اطلاعات و مشخصات فایل
پياده سازي VLSI يك شبكه عصبي آنالوگ مناسب براي الگوريتم هاي ژنتيك
  • کد فایل: 20306
  • قیمت: 4,000 تومان
  • فرمت فایل دانلودی: .doc
  • حجم فایل: 549 کیلوبایت
  • تعداد مشاهده: 2082 بازدید
  • فرمت فایل اصلی: doc
  • تعداد صفحات: 22 صفحه
  • اطلاعات فروشنده

شرح فایل

خلاصه
مفيد بودن شبكه عصبي آنالوگ مصنوعي بصورت خيلي نزديكي با ميزان قابليت آموزش پذيري آن محدود مي شود .
اين مقاله يك معماري شبكه عصبي آنالوگ جديد را معرفي مي كند كه وزنهاي بكار برده شده در آن توسط الگوريتم ژنتيك تعيين مي شوند .
اولين پياده سازي VLSI ارائه شده در اين مقاله روي سيليكوني با مساحت كمتر از 1mm كه شامل 4046 سيناپس و 200 گيگا اتصال در ثانيه است اجرا شده است .
از آنجائيكه آموزش مي تواند در سرعت كامل شبكه انجام شود بنابراين چندين صد حالت منفرد در هر ثانيه مي تواند توسط الگوريتم ژنتيك تست شود .
اين باعث مي شود تا پياده سازي مسائل بسيار پيچيده كه نياز به شبكه هاي چند لايه بزرگ دارند عملي بنظر برسد .
- مقدمه
شبكه هاي عصبي مصنوعي به صورت عمومي بعنوان يك راه حل خوب براي مسائلي از قبيل تطبيق الگو مورد پذيرش قرار گرفته اند .
عليرغم مناسب بودن آنها براي پياده سازي موازي ، از آنها در سطح وسيعي بعنوان شبيه سازهاي عددي در سيستمهاي معمولي استفاده مي شود .
يك دليل براي اين مسئله مشكلات موجود در تعيين وزنها براي سيناپسها در يك شبكه بر پايه مدارات آنالوگ است .
موفقترين الگوريتم آموزش ، الگوريتم Back-Propagation است .
اين الگوريتم بر پايه يك سيستم متقابل است كه مقادير صحيح را از خطاي خروجي شبكه محاسبه مي كند .
يك شرط لازم براي اين الگوريتم دانستن مشتق اول تابع تبديل نرون است .
در حاليكه اجراي اين مسئله براي ساختارهاي ديجيتال از قبيل ميكروپروسسورهاي معمولي و سخت افزارهاي خاص آسان است ، در ساختار آنالوگ با مشكل روبرو مي شويم .
دليل اين مشكل ، تغييرات قطعه و توابع تبديل نرونها و در نتيجه تغيير مشتقات اول آنها از نروني به نرون ديگر و از تراشه اي به تراشه ديگر است و چه چيزي مي تواند بدتر از اين باشد كه آنها با دما نيز تغيير كنند .
ساختن مدارات آنالوگي كه بتوانند همه اين اثرات را جبران سازي كنند امكان پذير است ولي اين مدارات در مقايسه با مدارهايي كه جبران سازي نشده اند داراي حجم بزرگتر و سرعت كمتر هستند .
براي كسب موفقيت تحت فشار رقابت شديد از سوي دنياي ديجيتال ، شبكه هاي عصبي آنالوگ نبايد سعي كنند كه مفاهيم ديجيتال را به دنياي آنالوگ انتقال دهند .
در عوض آنها بايد تا حد امكان به فيزيك قطعات متكي باشند تا امكان استخراج يك موازي سازي گسترده در تكنولوژي VLSI مدرن بدست آيد .
شبكه هاي عصبي براي چنين پياده سازيهاي آنالوگ بسيار مناسب هستند زيرا جبران سازي نوسانات غير قابل اجتناب قطعه مي تواند در وزنها لحاظ شود .
مسئله اصلي كه هنوز بايد حل شود آموزش است .
حجم بزرگي از مفاهيم شبكه عصبي آنالوگ كه در اين زمينه مي توانند يافت شوند ، تكنولوژيهاي گيت شناور را جهت ذخيره سازي وزنهاي آنالوگ بكار مي برند ، مثل EEPROM حافظه هاي Flash .
در نظر اول بنظر مي رسد كه اين مسئله راه حل بهينه اي باشد .
آن فقط سطح كوچكي را مصرف مي كند و بنابراين حجم سيناپس تا حد امكان فشرده مي شود (كاهش تا حد فقط يك ترانزيستور) .
دقت آنالوگ مي تواند بيشتر از 8 بيت باشد و زمان ذخيره سازي داده (با دقت 5 بيت) تا 10 سال افزايش مي يابد .
اگر قطعه بطور متناوب مورد برنامه ريزي قرار گيرد ، يك عامل منفي وجود خواهد داشت و آن زمان برنامه ريزي و طول عمر محدود ساختار گيت شناور است .
بنابراين چنين قطعاتي احتياج به وزنهايي دارند كه از پيش تعيين شده باشند .
اما براي محاسبه وزنها يك دانش دقيق از تابع تبديل شبكه ضروري است .
براي شكستن اين چرخه پيچيده ، ذخيره سازي وزن بايد زمان نوشتن كوتاهي داشته باشد .
اين عامل باعث مي شود كه الگوريتم ژنتيك وارد محاسبات شود .
با ارزيابي تعداد زيادي از ساختارهاي تست مي توان وزنها را با بكار بردن يك تراشه واقعي تعيين كرد .
همچنين اين مسئله مي تواند حجم عمده اي از تغييرات قطعه را جبران سلزي كند ، زيرا داده متناسب شامل خطاهايي است كه توسط اين نقايص ايجاد شده اند .
- مقدمه
شبكه هاي عصبي مصنوعي به صورت عمومي بعنوان يك راه حل خوب براي مسائلي از قبيل تطبيق الگو مورد پذيرش قرار گرفته اند .
عليرغم مناسب بودن آنها براي پياده سازي موازي ، از آنها در سطح وسيعي بعنوان شبيه سازهاي عددي در سيستمهاي معمولي استفاده مي شود .
يك دليل براي اين مسئله مشكلات موجود در تعيين وزنها براي سيناپسها در يك شبكه بر پايه مدارات آنالوگ است .
موفقترين الگوريتم آموزش ، الگوريتم Back-Propagation است .
اين الگوريتم بر پايه يك سيستم متقابل است كه مقادير صحيح را از خطاي خروجي شبكه محاسبه مي كند .
يك شرط لازم براي اين الگوريتم دانستن مشتق اول تابع تبديل نرون است .
در حاليكه اجراي اين مسئله براي ساختارهاي ديجيتال از قبيل ميكروپروسسورهاي معمولي و سخت افزارهاي خاص آسان است ، در ساختار آنالوگ با مشكل روبرو مي شويم .
دليل اين مشكل ، تغييرات قطعه و توابع تبديل نرونها و در نتيجه تغيير مشتقات اول آنها از نروني به نرون ديگر و از تراشه اي به تراشه ديگر است و چه چيزي مي تواند بدتر از اين باشد كه آنها با دما نيز تغيير كنند .
ساختن مدارات آنالوگي كه بتوانند همه اين اثرات را جبران سازي كنند امكان پذير است ولي اين مدارات در مقايسه با مدارهايي كه جبران سازي نشده اند داراي حجم بزرگتر و سرعت كمتر هستند .
براي كسب موفقيت تحت فشار رقابت شديد از سوي دنياي ديجيتال ، شبكه هاي عصبي آنالوگ نبايد سعي كنند كه مفاهيم ديجيتال را به دنياي آنالوگ انتقال دهند .
در عوض آنها بايد تا حد امكان به فيزيك قطعات متكي باشند تا امكان استخراج يك موازي سازي گسترده در تكنولوژي VLSI مدرن بدست آيد .
شبكه هاي عصبي براي چنين پياده سازيهاي آنالوگ بسيار مناسب هستند زيرا جبران سازي نوسانات غير قابل اجتناب قطعه مي تواند در وزنها لحاظ شود .
مسئله اصلي كه هنوز بايد حل شود آموزش است .
حجم بزرگي از مفاهيم شبكه عصبي آنالوگ كه در اين زمينه مي توانند يافت شوند ، تكنولوژيهاي گيت شناور را جهت ذخيره سازي وزنهاي آنالوگ بكار مي برند ، مثل EEPROM حافظه هاي Flash .
در نظر اول بنظر مي رسد كه اين مسئله راه حل بهينه اي باشد .
آن فقط سطح كوچكي را مصرف مي كند و بنابراين حجم سيناپس تا حد امكان فشرده مي شود (كاهش تا حد فقط يك ترانزيستور) .
دقت آنالوگ مي تواند بيشتر از 8 بيت باشد و زمان ذخيره سازي داده (با دقت 5 بيت) تا 10 سال افزايش مي يابد .
اگر قطعه بطور متناوب مورد برنامه ريزي قرار گيرد ، يك عامل منفي وجود خواهد داشت و آن زمان برنامه ريزي و طول عمر محدود ساختار گيت شناور است .
بنابراين چنين قطعاتي احتياج به وزنهايي دارند كه از پيش تعيين شده باشند .
اما براي محاسبه وزنها يك دانش دقيق از تابع تبديل شبكه ضروري است .
براي شكستن اين چرخه پيچيده ، ذخيره سازي وزن بايد زمان نوشتن كوتاهي داشته باشد .
اين عامل باعث مي شود كه الگوريتم ژنتيك وارد محاسبات شود .
با ارزيابي تعداد زيادي از ساختارهاي تست مي توان وزنها را با بكار بردن يك تراشه واقعي تعيين كرد .
همچنين اين مسئله مي تواند حجم عمده اي از تغييرات قطعه را جبران سلزي كند ، زيرا داده متناسب شامل خطاهايي است كه توسط اين نقايص ايجاد شده اند .

خرید و دانلود فایل
  • قیمت: 4,000 تومان
  • فرمت فایل دانلودی: .doc
  • حجم فایل: 549 کیلوبایت

راهنمای خرید و دانلود فایل

  • پرداخت با کلیه کارتهای بانکی عضو شتاب امکانپذیر است.
  • پس از پرداخت آنلاین، بلافاصله لینک دانلود فعال می شود و می توانید فایل را دانلود کنید. در صورتیکه ایمیل خود را وارد کرده باشید همزمان یک نسخه از فایل به ایمیل شما ارسال میگردد.
  • در صورت بروز مشکل در دانلود، تا زمانی که صفحه دانلود را نبندید، امکان دانلود مجدد فایل، با کلیک بر روی کلید دانلود، برای چندین بار وجود دارد.
  • در صورتیکه پرداخت انجام شود ولی به هر دلیلی (قطعی اینترنت و ...) امکان دانلود فایل میسر نگردید، با ارائه نام فایل، کد فایل، شماره تراکنش پرداخت و اطلاعات خود، از طریق تماس با ما، اطلاع دهید تا در اسرع وقت فایل خریداری شده برای شما ارسال گردد.
  • در صورت وجود هر گونه مشکل در فایل دانلود شده، حداکثر تا 24 ساعت، از طریق تماس با ما اطلاع دهید تا شکایت شما مورد بررسی قرار گیرد.
  • برای دانلود فایل روی دکمه "خرید و دانلود فایل" کلیک کنید.

نام
ایمیل
تلفن تماس
سوال یا نظر