تاریخچه و روش و علت محاسبه عدد π

2,000 تومان می‌توانید توسط تمام کارت‌های بانکی عضو شتاب خرید خود را انجام داده و بلافاصله بعد از خرید فایل را دریافت نمایید. خرید و دانلود فایل سوال از فروشنده راهنمای دریافت
  • اطلاعات و مشخصات فایل
تاریخچه و روش و علت محاسبه عدد  π
  • کد فایل: 36511
  • قیمت: 2,000 تومان
  • فرمت فایل دانلودی: .zip
  • حجم فایل: 86 کیلوبایت
  • تعداد مشاهده: 506 بازدید
  • تعداد صفحات: 17 صفحه
  • اطلاعات فروشنده

شرح فایل

عدد پی:
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819628810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609...



فهرست مطالب
عنوان
مقدمه
تاریخچه
تقریب اعشاری عدد پی
روش ارشمیدس برای محاسبه عدد پی
چرا عدد پی را محاسبه می کنیم؟
با سوزن عدد "PI" را حساب کنید 9
عدد پی تا 400 رقم اعشار
روز جهانی پی
منابع




مقدمه
عدد پی عددگنگی است که در اکثر محاسبات ریاضی به نحوی حضور دارد و از مهمترین اعداد کاربردی در ریاضیات می‌باشدو آن را با نمایش می‌دهند. در هندسه اقلیدسی دو بعدی، این عدد را نسبت محیط دایره به قطر دایره و یا مساحت دایره ای به شعاع واحد تعریف می‌کنند. در ریاضیات مدرن این عدد را در علم آنالیز و با استفاده از توابع مثلثاتی ، به صورت دقیق ریاضی تعریف می‌کنند.به عنوان نمونه عدد پی رادو برابر کوچکترین مقدار مثبت x ،که به ازای آن cos(x)=0 میشود تعریف می‌کنند.
تاریخچه
بابلیان هنگامی که می‌خواستند مساحت دایره را حساب کنند،مربع شعاع آن را در 3 ضرب می‌کردند.البته لوح‌های قدیمی تری از بابلیان وجود دارد که مشخص می‌کند آنها مقدار تقریبی پی را برابر3.125 می‌دانستند.در مصر باستان مساحت دایره را با استفاده از فرمول محاسبه می‌کردند.( d قطر دایره در نظر گرفته می‌شد )که در نتیجه مقدار تقریبی عدد پی 3.1605 بدست می‌آید.


________________________________________
تقریب اعشاری عدد پی
اولین نظریه در مورد مقدار تقریبی عدد پی توسط ارشمیدس بیان شد.این نظریه بر پایه تقریب زدن مساحت دایره بوسیله یک شش ضلعی منتظم
محیطیو یک شش ضلعی منظم محاطی استوار است.
ریاضیدانان اروپایی در قرن هفدهم به مقدار واقعی عدد پی نزدیک‌تر شدند.از جمله این دانشمندان جیمز گریگوری بود که برای پیدا کردن مقدار عدد پی از فرمول زیر استفاده کرد:

یکی از مشکلاتی که در این روش وجود دارد این است که برای پیدا کردن مقدار عدد پی تا 6 رقم اعشار باید پنج میلیون جمله از سری فوق را با هم جمع کنیم.
در اوایل قرن هجدهم ریاضیدان دیگری به نام جان ماشین فرمول گریگوری را اصلاح کرد که این فرمول امروزه نیز در برنامه های رایانه ای برای محاسبه عدد پی مورد استفاده قرار می‌گیرد.
این فرمول به صورت زیر است:



محتوای فایل دانلودی

عدد پی:
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819628810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609...
فهرست مطالب
عنوان
مقدمه
تاریخچه
تقریب اعشاری عدد پی
روش ارشمیدس برای محاسبه عدد پی
چرا عدد پی را محاسبه می کنیم؟
با سوزن عدد "PI" را حساب کنید 9
عدد پی تا 400 رقم اعشار
روز جهانی پی
منابع
مقدمه
عدد پی عددگنگی است که در اکثر محاسبات ریاضی به نحوی حضور دارد و از مهمترین اعداد کاربردی در ریاضیات می‌باشدو آن را با نمایش می‌دهند. در هندسه اقلیدسی دو بعدی، این عدد را نسبت محیط دایره به قطر دایره و یا مساحت دایره ای به شعاع واحد تعریف می‌کنند. در ریاضیات مدرن این عدد را در علم آنالیز و با استفاده از توابع مثلثاتی ، به صورت دقیق ریاضی تعریف می‌کنند.به عنوان نمونه عدد پی رادو برابر کوچکترین مقدار مثبت x ،که به ازای آن cos(x)=0 میشود تعریف می‌کنند.
تاریخچه
بابلیان هنگامی که می‌خواستند مساحت دایره را حساب کنند،مربع شعاع آن را در 3 ضرب می‌کردند.البته لوح‌های قدیمی تری از بابلیان وجود دارد که مشخص می‌کند آنها مقدار تقریبی پی را برابر3.125 می‌دانستند.در مصر باستان مساحت دایره را با استفاده از فرمول محاسبه می‌کردند.( d قطر دایره در نظر گرفته می‌شد )که در نتیجه مقدار تقریبی عدد پی 3.1605 بدست می‌آید.
________________________________________
تقریب اعشاری عدد پی
اولین نظریه در مورد مقدار تقریبی عدد پی توسط ارشمیدس بیان شد.این نظریه بر پایه تقریب زدن مساحت دایره بوسیله یک شش ضلعی منتظم
محیطیو یک شش ضلعی منظم محاطی استوار است.
ریاضیدانان اروپایی در قرن هفدهم به مقدار واقعی عدد پی نزدیک‌تر شدند.از جمله این دانشمندان جیمز گریگوری بود که برای پیدا کردن مقدار عدد پی از فرمول زیر استفاده کرد:
یکی از مشکلاتی که در این روش وجود دارد این است که برای پیدا کردن مقدار عدد پی تا 6 رقم اعشار باید پنج میلیون جمله از سری فوق را با هم جمع کنیم.
در اوایل قرن هجدهم ریاضیدان دیگری به نام جان ماشین فرمول گریگوری را اصلاح کرد که این فرمول امروزه نیز در برنامه های رایانه ای برای محاسبه عدد پی مورد استفاده قرار می‌گیرد.
این فرمول به صورت زیر است:

خرید و دانلود فایل
  • قیمت: 2,000 تومان
  • فرمت فایل دانلودی: .zip
  • حجم فایل: 86 کیلوبایت

راهنمای خرید و دانلود فایل

  • پرداخت با کلیه کارتهای بانکی عضو شتاب امکانپذیر است.
  • پس از پرداخت آنلاین، بلافاصله لینک دانلود فعال می شود و می توانید فایل را دانلود کنید. در صورتیکه ایمیل خود را وارد کرده باشید همزمان یک نسخه از فایل به ایمیل شما ارسال میگردد.
  • در صورت بروز مشکل در دانلود، تا زمانی که صفحه دانلود را نبندید، امکان دانلود مجدد فایل، با کلیک بر روی کلید دانلود، برای چندین بار وجود دارد.
  • در صورتیکه پرداخت انجام شود ولی به هر دلیلی (قطعی اینترنت و ...) امکان دانلود فایل میسر نگردید، با ارائه نام فایل، کد فایل، شماره تراکنش پرداخت و اطلاعات خود، از طریق تماس با ما، اطلاع دهید تا در اسرع وقت فایل خریداری شده برای شما ارسال گردد.
  • در صورت وجود هر گونه مشکل در فایل دانلود شده، حداکثر تا 24 ساعت، از طریق تماس با ما اطلاع دهید تا شکایت شما مورد بررسی قرار گیرد.
  • برای دانلود فایل روی دکمه "خرید و دانلود فایل" کلیک کنید.

نام
ایمیل
تلفن تماس
سوال یا نظر