مينيمم كردن توابع چند متغيره

7,000 تومان می‌توانید توسط تمام کارت‌های بانکی عضو شتاب خرید خود را انجام داده و بلافاصله بعد از خرید فایل را دریافت نمایید. خرید و دانلود فایل سوال از فروشنده راهنمای دریافت
  • اطلاعات و مشخصات فایل
مينيمم كردن توابع چند متغيره
  • کد فایل: 20496
  • قیمت: 7,000 تومان
  • فرمت فایل دانلودی: .doc
  • حجم فایل: 1,597 کیلوبایت
  • تعداد مشاهده: 1850 بازدید
  • فرمت فایل اصلی: doc
  • تعداد صفحات: 45 صفحه
  • اطلاعات فروشنده

شرح فایل

مقدمه:
يك كاربرد مهم حساب ديفرانسيل، پيدا كردن مينيمم موضعي يك تابع است. مسائل مربوط به ماكزيمم كردن نيز با تئوري مينيمم كردن قابل حل هستند. زيرا ماكزيمم F در نقطه اي يافت مي شود كه -F مينيمم خود را اختيار مي كند.
در حساب ديفرانسيل تكنيك اساسي براي مينيمم كردن، مشتق گيري از تابعي كه مي‌خواهيم آن را مينيمم كنيم و مساوي صفر قرار دادن آن است.
نقاطي كه معادله حاصل را ارضا مي كنند، نقاط مورد نظر هستند. اين تكنيك را مي توان براي توابع يك يا چند متغيره نيز استفاده كرد. براي مثال اگر يك مقدار مينيمم را بخواهيم، به نقاطي نگاه مي كنيم كه هر سه مشتق پاره اي برابر صفر باشند.
اين روند را نمي توان در محاسبات عدي به عنوان يك هدف عمومي در نظر گرفت. زيرا نياز به مشتقي دارد كه با حل يك يا چند معادله بر حسب يك يا چند متغير بدست مي آيد. اين كار به همان سختي حل مسئله بصورت مستقيم است.

مسائل مقيد و نامقيد مينيمم سازي:
مسائل مينيمم سازي به دو شكل هستند:نامقيد و مقيد:
در يك مسئله ي مينيمم سازي نامقيد يك تابع F از يك فضاي n بعدي به خط حقيقي R تعريف شده و يك نقطه ي با اين خاصيت كه

جستجو مي شود.
نقاط در را بصورت z, y, x و... نشان مي دهيم. اگر نياز بود كه مولفه هاي يك نقطه را نشان دهيم مي نويسيم:

در يك مسئله ي مينيمم سازي مقيد، زير مجموعه ي K در مشخص مي شود . يك نقطة
جستجو مي شود كه براي آن:

چنين مسائلي بسيار مشكل ترند، زيرا نياز است كه نقاط در K در نظر گرفته شوند. بعضي مواقع مجموعه ي K به طريقي پيچيده تعريف مي شود.
سهمي گون بيضوي به معادله‌ي

را در نظر بگيريد كه در شكل 1-14 مشخص شده است. به وضوح مينيمم نامقيد در نقطه ي
(1و1) ظاهر مي شود، زيرا:

اگر
مينيمم مقيد 4 است و در (0،0) اتفاق مي افتد.
Matlab داراي قسمتي است براي بهينه سازي كه توسط اندرو گريس طراحي شده و شامل دستورات زيادي براي بهينه سازي توابع عمومي خطي و غير خطي است.
براي مثال ما مي توانيم مسئله ي مينيمم سازي مربوط به سهمي گون بيضوي نشان داده شده در شكل 1-14 را حل نماييم.
ابتدا يك M-file به نام q1.m مي نويسيم و تابع را تعريف مي كنيم:

خرید و دانلود فایل
  • قیمت: 7,000 تومان
  • فرمت فایل دانلودی: .doc
  • حجم فایل: 1,597 کیلوبایت

راهنمای خرید و دانلود فایل

  • پرداخت با کلیه کارتهای بانکی عضو شتاب امکانپذیر است.
  • پس از پرداخت آنلاین، بلافاصله لینک دانلود فعال می شود و می توانید فایل را دانلود کنید. در صورتیکه ایمیل خود را وارد کرده باشید همزمان یک نسخه از فایل به ایمیل شما ارسال میگردد.
  • در صورت بروز مشکل در دانلود، تا زمانی که صفحه دانلود را نبندید، امکان دانلود مجدد فایل، با کلیک بر روی کلید دانلود، برای چندین بار وجود دارد.
  • در صورتیکه پرداخت انجام شود ولی به هر دلیلی (قطعی اینترنت و ...) امکان دانلود فایل میسر نگردید، با ارائه نام فایل، کد فایل، شماره تراکنش پرداخت و اطلاعات خود، از طریق تماس با ما، اطلاع دهید تا در اسرع وقت فایل خریداری شده برای شما ارسال گردد.
  • در صورت وجود هر گونه مشکل در فایل دانلود شده، حداکثر تا 24 ساعت، از طریق تماس با ما اطلاع دهید تا شکایت شما مورد بررسی قرار گیرد.
  • برای دانلود فایل روی دکمه "خرید و دانلود فایل" کلیک کنید.

نام
ایمیل
تلفن تماس
سوال یا نظر
جستجوی مرتبط: مينيمم توابع چند متغيره